Complete integrability of nonlocal nonlinear Schrödinger equation
نویسندگان
چکیده
منابع مشابه
Integrable nonlocal nonlinear Schrödinger equation.
A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contras...
متن کاملChaoticons described by nonlocal nonlinear Schrödinger equation
It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only chaotic properties (with positive Lyapunov exponents and spatial decoherence) but also soliton-lik...
متن کاملTests of Integrability of the Supersymmetric Nonlinear Schrödinger Equation
We apply various conventional tests of integrability to the supersymmetric nonlinear Schrödinger equation. We find that a matrix Lax pair exists and that the system has the Painlevé property only for a particular choice of the free parameters of the theory. We also show that the second Hamiltonian structure generalizes to superspace only for these values of the parameters. We are unable to cons...
متن کاملRogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation
In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, th...
متن کاملSolution of a Nonlinear Schrödinger Equation
A slightly modified variant of the cubic periodic one-dimensional nonlinear Schrödinger equation is shown to be well-posed, in a relatively weak sense, in certain function spaces wider than L. Solutions are constructed as sums of infinite series of multilinear operators applied to initial data; no fixed point argument or energy inequality are used.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2017
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4974018